Mission

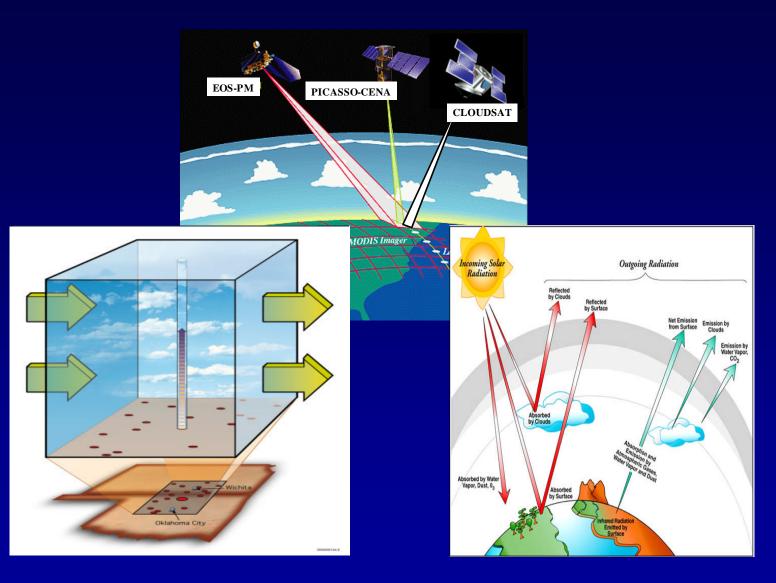
- •To deploy a suite of instruments at fixed and drifting locations above the earth in some climatologically important regions
- •To collect a well-defined *time series* of atmospheric radiative transport data
- •To make observations on the scale of a General Circulation Model (GCM) grid box, so as to define the physics underlying some of the important parameterizations in the GCM's used in climate change.

Science Questions

- What is the high-frequency dynamics of ERB and its its impact on global and regional climate?
- How well can we model the ERB at TOA and surface (including spectral and angular variations) given vertical profile information?
- What is the interaction of ERB with hydrological cycle in some poorly understood regimes, such as ERB drift in the tropics and stratospheric H2O

Examples of Scientific Themes:

- —Upper boundary problem (radiation balance)
- -Climate forcing (trace gases, aerosol, cloud, land cover change, etc.)
- -Cloud parameterizations (sub-scale variability, temporal variability, cloud system evolution, etc.)
- -Changes in stratosphere (H2O, O3,...)
- -Monitoring special events (hurricanes, volcano,


Variables required to be observed:

- TOA and Surface Radiative Irradiance and Radiance (broadband & spectral)
- Atmospheric Flux Divergence
- Profiles of atmospheric species (T, P, u,v,h, O3)
- Profiles of radiative active agents (water vapor, aerosol, cloud)
- surface (albedo, emissivity)

Instrumentation

- Broad-band and narrow-band radiometers (solar and infrared radiation); WFV, Scanning, CCD Imager, ?
- Cloud Profile Radar (cloud properties), 35, 95 GHz or else?
- Lidar (pulsed laser; particle and thin cloud properties)
- Sky imagers (cloud cover)
- •Microwave radiometer (water vapor and liquid water)
- UAV and radiosounding (temp, humidity, winds)

Satellite validation

Single-Column Modeling

Radiative closure

Unique and Complementary Features

Uniqueness:

- Continuous operation at fixed locations
- •Synergetic observations of multiple instruments
- •Capability of large payload (relative to satellite)?

Complementary

To ground-based observation

-Provide the upper-boundary and profile information

To space-based observation

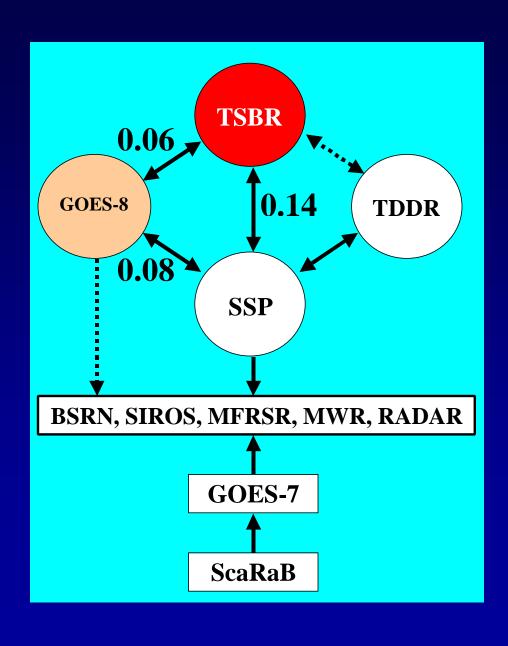
-Provide continuous and intermediate platform

Programmatic Questions:

- •What science questions may be uniquely addressed by the new stratospheric platforms?
- •What instruments can be readily deployed, what will be available in the near future, and what new technologies need to be developed to address these questions?
- •To what extent will observations from the new stratospheric platforms complement and support existing satellite measurements, and to what extent will they provide new independent information?
- •4. What impact will the new observations have on resolving some of the key issues concerning global and regional climate?

Facilitate satellite programs

- •Provide a platform for dry-run of any new sensors
- •Provide a validation tool for the following sensors and new ones:
 - **–EOS-1** (**TERRA**) platform: **MISR** (Multi-angle Imaging SpectroRadiometer), **CERES** (Clouds and Earth's Radiant Energy System), **MODIS** (Moderate Resolution Imaging Spectrometer), all use the 3 ARM sites as primary validation
 - **–EOS-2** (**AQUA**) platform: **MODIS, AIRS** (Atmospheric Infrared Sounder) will use for ARM sites for validation; AIRS paying for sondes launched at site overpasses for validation
 - **-CLOUDSAT** validation

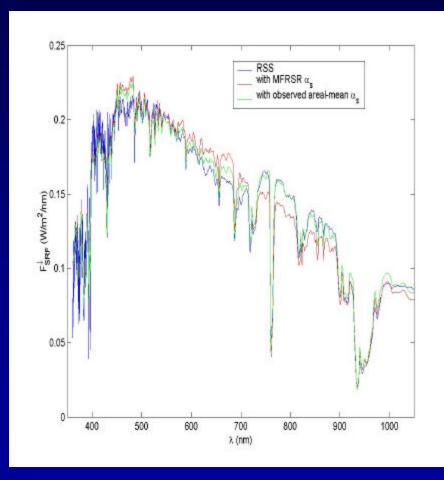

Closure Problem

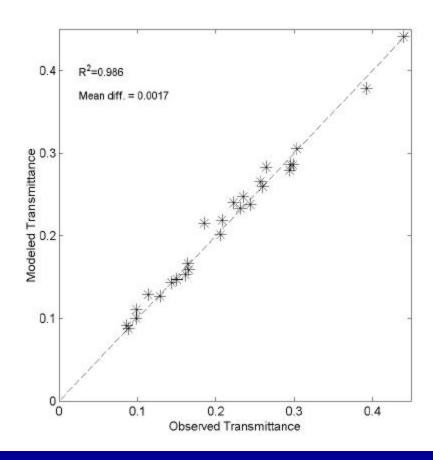
- Continuous constraint at the TOA
- •Monitor the site behavior well enough
- •IOP campaigns to gather complimentary information
- •Flexible FOV to match grid-cell of GCM or meso-scale models

Deployment

An example of instrument consistency test

VI: Atmosphere & Surface Constrained Input Variables to MODTRAN-4 (SGP)


Atmospheric profiles: radiosonde soundings
Total water vapour and liquid water: microwave
Cloud base height: laser ceilometer
Cloud top height: cloud radar reflectivity
Cloud optical depth: transmittance at 500nm.
Cloud effective radius: inferred from LWP and tau
Cloud liquid water content profiles: Microwave rad
Ozone column amount: TOMS data
Surface spectral albedo: Mapping


Output to be Compared with MODTRAN-4

Surface spectral fluxes: RSS (360 -1100 nm, 1024 channels) Surface broadband fluxes: SIRS (diffuse corrected)

Comparison of transmittance with different surface albedos

Comparison of surface broadband solar transmittance

